فارسي | English
  About Us | About Iran | Contact Us | Staff Info[Geoportal Info] [Maps] [Mining Info] [Other Activities]  
 
  News | Events | Photo Gallery | Downloads | Links | Kids  Search    Region    Scale    Subject   :Access to information by   Home | Newest   
 

News Comment
 
Geology
2017/03/21
NGDIR News Section-- Rock samples from northeastern Canada retain chemical signals that help explain what Earth's crust was like more than 4 billion years ago, reveals new work from Carnegie's Richard Carlson and Jonathan O'Neil of the University of Ottawa. Their work is published by Science.
  
   There is much about Earth's ancient crust that scientists don't understand. This is because most of the planet's original crust simply isn't around any longer to be studied directly -- it has either sunk back into the planet's interior due to the action of plate tectonics or been transformed by geological activity at Earth's surface to make new, younger rocks.
  
   The approach employed in this study examined variations in the abundance of an isotope of the element neodymium, which is created by the radioactive decay of a different element, samarium.
  
   Isotopes are versions of an element that have the same number of protons, but different numbers of neutrons, causing each isotope to have a different mass. The isotope of samarium with a mass of 146 is unstable and decays to the isotope of neodymium with a mass of mass 142. (If you're interested in knowing how, it does this by emitting what's called an alpha particle -- composed of two neutrons and two protons -- from its nucleus.)
  
   Samarium-146 is a radioactive isotope that has a half-life of only 103 million years. That may sound like a long time, but in geological terms it is really quite short. While samarium-146 was present when Earth formed, it became extinct very early in Earth's history. We know of its existence from the study of very ancient rocks, especially meteorites and samples from Mars and the Moon.
  
   Variations in the relative abundance of neodymium-142 compared to other isotopes of neodymium that didn't originate from decaying samarium reflect chemical processes that changed the ratio of samarium to neodymium in the rock while samarium-146 was still present -- basically before about 4 billion years ago.
  
   Carlson and O'Neil studied 2.7 billion-year-old granitic rocks that make up a good portion of the eastern shore of Hudson Bay. The abundances of neodymium-142 in these granites indicates that they were derived from the re-melting of much older rocks -- rocks that were more than 4.2 billion years old -- and that these ancient rocks were compositionally similar to the abundant magnesium-rich rock type known as basalt, which makes up all of the present day oceanic crust as well as large volcanoes such as Hawaii and Iceland.
  
   In more-recent times in Earth's history, basaltic oceanic crust survives at Earth's surface for less than 200 million years before it sinks back into Earth's interior due to the action of plate tectonics. The results presented in this paper, however, suggest that basaltic crust, which may have formed not long after Earth's formation, survived at Earth's surface for at least 1.5 billion years before later being re-melted into rocks that form a good portion of the northernmost Superior craton, a geological formation that extends roughly from the Hudson Bay in Quebec to Lake Huron in Ontario.
  
   Their findings thus have important implications about the Earth's earliest crust and the processes that started the formation of Earth's continental crust.
  
   By Carnegie Institution for Science

 
 
Publications  Library
Glossary  Papers
 
 
 
 
FAQ  Members
Job Offer  Training
 
 
 
 
• Medical Geology Database 
• Geological Atlas of Roads 
• Marine Geology 
• Geography information 
• Mines and Deposits of Iran 
• Land Geophysics Database- Iran 
• Landslide Database of Iran 
• Exploration Area DB 
• Copper Database 
• Gold Database  
• Geoscience Laboratories 
• Mineral Information 
• Bibliographic Database 
• Geochemistry Database 
• Earthquake database 
• Abandoned mines DB of Iran 
• Mineral processing database 
• Minerals database 
 
 
 
 
Login Name:
Password:
Sign Up for membership ]
 
 
 
   Others Activities:• Geo Hazard Of South Caspian • Geoscience database of ALBA • Geoscience Database of ECO 
• GEOLOGICAL SURVEY OF IRAN • Tajikistan Geoscience Database • Geo Database of Venezuela • 4th National Development Plan 
• Export & Import Regulation Act     
 
 
Maps:• Map of Iran's Earthquake • Distribution Map of mineral Processing Plants 
• Mineral Distribution Map of Iran • Geosciences laboratories distribution map of Iran • Orohydrographic Map of Iran 
• Select state on iran map • Geological Map of Iran(1:1000, 000 Scale) • 2500 K Magnetic Lineament Map of Iran 
    
 
Best viewed:1024*768
National Geoscience Database Of IRAN
URL:www.ngdir.ir
Contact Mail:Info@ngdir.ir
 
 
 Search with:           
Designed by Payvand Software Group  Privacy | Copyright | Disclaimer