فارسي | English
  About Us | About Iran | Contact Us | Staff Info[Geoportal Info] [Maps] [Mining Info] [Other Activities]  
  News | Events | Photo Gallery | Downloads | Links | Kids  Search    Region    Scale    Subject   :Access to information by   Home | Newest   
Journal Contributions to Mineralogy and Petrology vol.163,no.1
Subject: Geology Type: Journal

Author: S. Jung, K. Mezger, O. Nebel, E. Kooijman, J. Berndt, F. Hauff and C. Munker, Guillaume Desbois, Janos L. Urai, Peter A. Kukla, Uwe Wollenberg, Fabi?n Perez-Willard, Zsolt Rad? and Sandor Riholm, Xiaozhi Yang, Hans Keppler, Catherine McCammon and Huaiwei Ni, Matteo Masotta, Carmela Freda and Mario Gaeta, J. A. Halpin, N. R. Daczko, L. A. Milan and G. L. Clarke, N. E. Matthews, D. M. Pyle, V. C. Smith, C. J. N. Wilson, C. Huber and V. van Hinsberg, Lorella Francalanci, Riccardo Avanzinelli, Isabella Nardini, Massimo Tiepolo, Jon P. Davidson and Riccardo Vannucci, Olivier Namur, Bernard Charlier, Michael J. Toplis and Jacqueline Vander Auwera, Olivier Bachmann, Chad D. Deering, Janina S. Ruprecht, Christian Huber, Alexandra Skopelitis and Cedric Schnyder, Karin H?gdahl, Jaroslaw Majka, H?kan Sj?str?m, Katarina Persson Nilsson, Stefan Claesson and Patrik Kone?n?

Publication Date: Jan. 2012  Publication No: vol.163,no.1Pages Number: 

Origin of Meso-Proterozoic post-collisional leucogranite suites (Kaokoveld, Namibia): constraints from geochronology and Nd, Sr, Hf, and Pb isotopes
   Leucocratic granites of the Proterozoic Kaoko Belt, northern Namibia, now preserved as meta-granites, define a rock suite that is distinct from the surrounding granitoids based on their chemical and isotopic characteristics. Least evolved members of this ~1.5-1.6-Ga-old leucogranite suite can be distinguished from ordinary calc-alkaline granites that occur elsewhere in the Kaoko Belt by higher abundances of Zr, Y, and REE, more radiogenic initial eNd values and unradiogenic initial 87Sr/86Sr. The leucogranites have high calculated zircon saturation temperatures (mostly > 920 degrees C for least fractionated samples), suggesting that they represent high-temperature melts originating from deep crustal levels. Isotope data (i.e., eNdi: +2.3 to -4.2) demonstrate that the granites formed from different sources and differentiated by a variety of processes including partial melting of mantle-derived meta-igneous rocks followed by crystal fractionation and interaction with older crustal material. Most fractionation-corrected Nd model ages (TDM) are between 1.7 and 1.8 Ga and only slightly older than the inferred intrusion age of ca. 1.6 Ga, indicating that the precursor rocks must have been dominated by juvenile material. Epsilon Hf values of zircon separated from two granite samples are positive (+11 and +13), and Hf model ages (1.5 and 1.6 Ga) are similar to the U-Pb zircon ages, again supporting the dominance of juvenile material. In contrast, the Hf model ages of the respective whole rock samples are 2.3 and 2.4 Ga, demonstrating the involvement of older material in the generation of the granites. The last major tectonothermal event in the Kaoko Belt in the Proterozoic occurred at ca. 2.0 Ga and led to reworking of mostly 2.6-Ga-old rocks. However, the presence of 1.6 Ga (post-collisional)granites reflects addition of some juvenile mantle-derived material after the last major tectonic event. The results suggest that similar A-type leucogranites are potentially more abundant in crustal terranes but are masked by AFC processes. In the case of the Kaoko Belt, it is suggested that this rock suite indicates a yet unidentified period of mantle-derived crustal growth in the Proterozoic of South Western Africa.
   Distribution of brine in grain boundaries during static recrystallization in wet, synthetic halite: insight from broad ion beam sectioning and SEM observation at cryogenic temperature
   We report observations from room temperature static recrystallization experiments (annealing times from minutes to year) of cold-pressed, synthetic, coarse-grained, wet sodium chloride, prepared by broad ion beam polishing and SEM observations at cryogenic temperature to observe directly the brine in grain boundaries. At all stages of annealing, the majority of the brine in the samples is connected in 2D sections along grain boundaries. Another part of the brine is in isolated brine inclusion arrays along grain boundaries and in brine inclusions left behind by migrating brine-filled grain boundaries. Most of these boundaries are mobile because the aggregate is coarsening. We interpret that the boundaries without observable brine films (<15 nm) and brine inclusion arrays are healed and immobile. Evolution of grain boundary structure involves three major processes. First, dissolution on one side of the grain boundary and precipitation on the other side, resulting in grain boundary migration. Second, the development of facets formed by low-index crystallographic planes of the grains bounding the grain boundary brine. When both sides of a grain boundary are able to develop low-index facets in a thick brine film, the resulting impingement boundary is interpreted to be immobile and may prevent the new grain from migrating into a deformed neighbor. When one side of a faceted boundary consists of low-index crystallographic planes and the other side passively follows this faceted shape along irrational surfaces, the boundary is mobile. Third, the healing of grain boundary brine films, producing solid-solid grain boundaries without resolvable brine films.
   Electrical conductivity of orthopyroxene and plagioclase in the lower crust
   The electrical conductivities of lower crustal orthopyroxene and plagioclase, as well as their dependence on water content, were measured at 6-12 kbar and 300-1,000 degrees C on both natural and pre-annealed samples prepared from fresh mafic xenolith granulites. The complex impedance was determined in an end-loaded piston cylinder apparatus by a Solarton-1260 Impedance/Gain Phase analyzer in the frequency range of 0.1-106 Hz. The spectra usually show an arc over the whole frequency range at low temperature and an arc plus a tail in the high and low frequency range, respectively, at high temperature. The arc is due to conduction in the sample interior, while the tails are probably due to electrode effects. Different conduction mechanisms have been identified under dry and hydrous conditions. For the dry orthopyroxene, the activation enthalpy is ~105 kJ/mol, and the conduction is likely due to small polarons, e.g., electrons hopping between Fe2+ and Fe3+. For the dry plagioclase, the activation enthalpy is ~161 kJ/mol, and the conduction may be related to the mobility of Na+. For the hydrous samples, the activation enthalpy is ~81 kJ/mol for orthopyroxene and ~77 kJ/mol for plagioclase, and the electrical conductivity is markedly enhanced, probably due to proton conduction. For each mineral, the conductivity increases with increasing water content, with an exponent of ~1, and the activation enthalpies are nearly independent of water content. Combining these data with our previous work on the conductivity of lower crustal clinopyroxene, the bulk conductivity of lower crustal granulites is modeled, which is usually >~10-4 S/m in the range of 600-1,000 degrees C. We suggest that the high electrical conductivity in most regions of the lower crust, especially where it consists mostly of granulites, can be explained by the main constitutive minerals, particularly if they contain some water. Contributions from other highly conducting materials such as hydrous fluids, melts, or graphite films are not strictly necessary to explain the observed conductivities.
   Origin of crystal-poor, differentiated magmas: insights from thermal gradient experiments
   Crystal-poor, differentiated magmas are commonly erupted from shallow, thermally zoned magma chambers. In order to constrain the origin of these magmas, we have experimentally investigated crystallization, differentiation and crystal-melt separation in presence of a thermal gradient. Experiments have been designed taking advantage of the innate temperature gradient of the piston cylinder apparatus and carried out on a phonolitic system at 0.3 GPa and temperature ranging from 1,050 to 800 degrees C. Crystallization degree and melt composition in experimental products vary as a function of the temperature gradient. In particular, melt composition differentiates from tephri-phonolite (starting material) to phonolite moving from the hotter, glassy zone (T = 1,050 degrees C) towards the cooler, heterogeneously crystallized zone (T = 900 degrees C) of the charge. The heterogeneously crystallized zone is made up of: (1) a crystal-rich, mushy region (crystallinity >30 vol%), (2) a rigid crystal framework (crystallinity =80 vol%) and (3) glassy belts of phonolitic glass at the top. Thermal gradient experiments picture crystallization, differentiation and crystal-melt separation processes occurring in a thermally zoned environment and reveal that relatively large volumes of crystal-poor melt (glassy belts) can originate as a consequence of the instability and collapse of the rigid crystal framework. Analogously, in thermally zoned magma chambers, the development and collapse of a solidification front may represent the controlling mechanism originating large volumes of crystal-poor, differentiated magmas.
   Decoding near-concordant U-Pb zircon ages spanning several hundred million years: recrystallisation, metamictisation or diffusion?
   In situ isotopic (U-Pb, Lu-Hf) and trace element analyses of zircon populations in six samples of the intrusive Mawson Charnockite, east Antarctica, emphasise complex zircon behaviour during very high-grade metamorphism. The combination of geochemical data sets is used to distinguish xenocrysts and identify a population of primary igneous zircon in situations where U-Pb data spread close to concordia over a few hundred Myr. The population is filtered to exclude grains with: (1) U-Pb ages >2% discordant, (2) anomalous trace element-content (Th, U, Y, REE) and (3) outlying Hf-isotopic values. Rare metamorphic-type grains were also excluded. Upon filtering the population, minimum emplacement ages for each sample were determined using the oldest grain(s). This approach improves upon age determinations in complex data sets that use weighted mean or isochron methods. Our results suggest that the Mawson Charnockite was emplaced episodically at c. 1145-1140 Ma, c. 1080-1050 Ma and c. 985-960 Ma. Core-outer core-rim and core-rim textures were identified but are not correlated with U-Pb ages. We establish that recrystallisation (mainly of zircon rims) must have occurred shortly following igneous crystallisation and that metamictisation/cracking is a Paleozoic to Recent event. Therefore, intra-zircon diffusion in a high-T, high-strain environment during Meso-Neoproterozoic orogenesis is inferred to have caused the extensive U-Pb isotopic disturbance. Charnockitic magmatism prior to c. 1,000 Ma has not previously been recorded in the Mawson region and indicates that orogenesis may have commenced c. 150 Myr earlier than previously thought. Correlations with similar aged rocks in adjacent regions have implications for supercontinent reconstructions.
   Quartz zoning and the pre-eruptive evolution of the ~340-ka Whakamaru magma systems, New Zealand
   Cathodoluminescence (CL) zoning in quartz crystals from rhyolitic pumices in two ignimbrite members of the ~340-ka Whakamaru super-eruption deposits, Taupo Volcanic Zone, New Zealand, is investigated in conjunction with the analysis of Ti concentration in quartz to reconstruct the history of changing magma chamber conditions and to elucidate the eruption-triggering processes. CL intensity images are taken as a proxy for Ti concentration and thus temperature and/or pressure and/or compositional variations during crystal growth history. Estimates of the maximum temperature changes (i.e., assuming other factors influencing Ti uptake remain constant) are made using the TitaniQ geothermometer based on the Ti concentration in quartz. These results are reviewed in comparison with Fe-Ti oxide, feldspar-melt and amphibole geothermometry. Core-to-rim quartz Ti profiles record a marked change in conditions (temperature increase and/or pressure decrease and/or change in melt composition) causing and then following a significant resorption horizon in the outer parts of the crystals. Two alternative models that could explain the quartz Ti zonation invoke a temperature increase caused by mafic recharge and/or a pressure decrease due to magma ponding and re-equilibration at shallow crustal levels. Concomitant changes in melt composition and Ti activity may, however, also have strongly influenced Ti uptake into the quartz. Some crystals also show other marked increases in CL brightness internally, but any accompanying magmatic changes did not result in eruption. Diffusion modelling indicates that this significant change in conditions occurred over ~10-85 years prior to caldera-forming eruption. This rapid thermal pulse or pressure change is interpreted as evidence for open-system processes, and appears to record a magma chamber recharge event that rejuvenated the Whakamaru magma system (melt-dominant magma plus crystal mush), and potentially acted as a trigger for processes that led to eruption.
   Crystal recycling in the steady-state system of the active Stromboli volcano: a 2.5-ka story inferred from in situ Sr-isotope and trace element data
   In situ Sr-isotope data by microdrilling, coupled with major and trace element analyses, have been performed on plagioclase and clinopyroxene from seven samples collected during the 2002-2003 eruptive crisis at Stromboli volcano (Aeolian Islands, Italy). On 28 December 2002, the persistent moderate explosive activity was broken by an effusive event lasting about 7 months. A more violent explosion (paroxysm) occurred on 5 April 2003. Two magma types were erupted, namely a volatile-poor and highly porphyritic magma (HP-magma) poured out as scoria or lava and a volatile-rich, phenocryst-poor magma (LP-magma) found as pumice. LP-magma differs from the HP-magma also for its slightly less-evolved chemistry, the groundmass composition and the lower Sr-isotope ratios. Micro-Sr-isotope data show the presence of zoned minerals in strong isotope disequilibrium, as previously found in products erupted in 1984, 1985 and 1996 AD, with 87Sr/86Sr values generally decreasing from cores to rims of minerals. Only some outer rims testify for equilibrium with the host groundmass. The internal mineral zones with high Sr-isotope ratios (0.70665-0.70618) are interpreted as antecrysts , crystallised during the previous activity and recycled in the present-day system since the opening shoshonitic activity of the Recent Period, which occurred at about 2.5 ka ago. This result has implications for the dynamics of the present-day plumbing system of Stromboli at intermediate pressure (about 2-3 km depth) and allows us to propose a model whereby an HP-magma reservoir is directly interconnected at the bottom with a cumulate crystal much reservoir. Efficient mixing between residing HP- and input LP-magmas can occur in this reservoir, due to more similar rheological characteristics of the two magmas than in the conduit, where crystallisation is enhanced by degassing. Antecrysts (and possibly melts) re-enter in the HP-magma reservoir both from the bottom, recycled by ascending LP-magmas crossing the crystal mush, and from the top, recycled by descending degassed and dense HP-magma, residual of the periodic Strombolian explosions at the surface. The isotope variation measured in the groundmasses allows calculating the proportion of the LP-magma entering the shallow HP-magma reservoir at ~20%. From this proportion, we estimate that the total volume of LP-magma input during 2002-2003 closely matches the magma volume erupted in the effusive event, suggesting a steady-state system at broadly constant volume. The comparison with estimates of the LP-magma volume ejected by the paroxysm indicates that the LP-magma amount directly reaching the surface during the 5 April paroxysm is minimal with respect to that entering the system.
   Prediction of plagioclase-melt equilibria in anhydrous silicate melts at 1-atm
   Many models for plagioclase-melt equilibria have been proposed over the past 30 years, but the focus is increasingly on the effects of water content and pressure. However, many geological and petrological applications concern low pressure and low water systems, such as the differentiation of large terrestrial basaltic magma chambers, and lunar and asteroidal magmatism. There is, therefore, a justified need to quantify the influence of anhydrous liquid composition on the composition of equilibrium plagioclase at 1-atm. With this in mind, a database of over 500 experimentally determined plagioclase-liquid pairs has been created. The selected low pressure, anhydrous, experiments include both natural and synthetic liquids, whose compositions range from basalt to rhyolite. Four equations are proposed, derived from this data. The first is based on a thermodynamically inspired formalism, explicitly integrating the effect of temperature. This equation uses free energies and activities of crystalline anorthite available from the literature. For the activity of anorthite in the liquid phase, it is found that current models of the activity of individual oxides are insufficient to account for the experimental results. We have therefore derived an empirical expression for the variation of anorthite activity in the liquid as a function of melt composition, based upon inversion of the experimental data. Using this expression allows the calculation of plagioclase composition with a relative error less than 10%. However, in light of the fact that temperature is not necessarily known for many petrological applications, an alternative set of T-independent equations is also proposed. For this entirely empirical approach, the database has been divided into three compositional groups, treated independently for regression purposes: mafic-ultramafic, alkali-rich mafic-ultramafic, and intermediate-felsic. This separation into distinct subgroups was found to be necessary to maintain errors below acceptable limits, but results across group boundaries were found to be comparable. Overall, 50% of plagioclase compositions are predicted to within 2% of the experimentally derived value, and 90% to within 5%, representing a significant improvement over existing models.
   Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: a petrological cycle associated with caldera collapse
   Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (=750-800 degrees C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800-850 degrees C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100 degrees C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos-Kos stage. The recent eruptions of the high-SiO2 rhyolite on Yali Island, which are low temperature and hydrous phases (sanidine, quartz, biotite), suggest that another large, potentially explosive magma chamber is presently building under the Kos-Nisyros volcanic center.
   Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Swede
   Monazite in melt-producing, poly-metamorphic terranes can grow, dissolve or reprecipitate at different stages during orogenic evolution particularly in hot, slowly cooling orogens such as the Svecofennian. Owing to the high heat flow in such orogens, small variations in pressure, temperature or deformation intensity may promote a mineral reaction. Monazite in diatexites and leucogranites from two Svecofennian domains yields older, coeval and younger U-Pb SIMS and EMP ages than zircon from the same rock. As zircon precipitated during the melt-bearing stage, its U-Pb ages reflect the timing of peak metamorphism, which is associated with partial melting and leucogranite formation. In one of the domains, the Granite and Diatexite Belt, zircon ages range between 1.87 and 1.86 Ga, whereas monazite yields two distinct double peaks at 1.87-1.86 and 1.82-1.80 Ga. The younger double peak is related to monazite growth or reprecipitation during subsolidus conditions associated with deformation along late-orogenic shear zones. Magmatic monazite in leucogranite records systematic variations in composition and age during growth that can be directly linked to Th/U ratios and preferential growth sites of zircon, reflecting the transition from melt to melt crystallisation of the magma. In the adjacent Ljusdal Domain, peak metamorphism in amphibolite facies occurred at 1.83-1.82 Ga as given by both zircon and monazite chronology. Pre-partial melting, 1.85 Ga contact metamorphic monazite is preserved, in spite of the high-grade overprint. By combining structural analysis, petrography and monazite and zircon geochronology, a metamorphic terrane boundary has been identified. It is concluded that the boundary formed by crustal shortening accommodated by major thrusting.

Publications  Library
Glossary  Papers
FAQ  Members
Job Offer  Training
• Medical Geology Database 
• Geological Atlas of Roads 
• Marine Geology 
• Geography information 
• Mines and Deposits of Iran 
• Land Geophysics Database- Iran 
• Landslide Database of Iran 
• Exploration Area DB 
• Copper Database 
• Gold Database  
• Geoscience Laboratories 
• Mineral Information 
• Bibliographic Database 
• Geochemistry Database 
• Earthquake database 
• Abandoned mines DB of Iran 
• Mineral processing database 
• Minerals database 
Login Name:
Sign Up for membership ]
   Others Activities:• Geoscience database of ALBA • Geoscience Database of ECO • GEOLOGICAL SURVEY OF IRAN 
• Tajikistan Geoscience Database • Geo Database of Venezuela • 4th National Development Plan • Foreign Investment(FIPPA) 
• The general policies (Mines) • 26th Symposium on Geosciences • Ongoing projects   
Maps:• Map of Iran's Earthquake • Distribution Map of mineral Processing Plants 
• Mineral Distribution Map of Iran • Geosciences laboratories distribution map of Iran • Orohydrographic Map of Iran 
• Select state on iran map • Geological Map of Iran(1:1000, 000 Scale) • 2500 K Magnetic Lineament Map of Iran 
Best viewed:1024*768
National Geoscience Database Of IRAN
Contact Mail:Info@ngdir.ir
 Search with:           
Designed by Payvand Software Group  Privacy | Copyright | Disclaimer